$(i,j) - s_c$ Open set in Bitopological Spaces

Hardi N. Aziz

Abstract— The aim of this paper is to introduce a new type of sets in Bitopological spaces called $(i,j) - S_C$ — open sets and give some of their properties. Relationship between this new set and other class of sets are obtained.

Keyword $-(i,j) - S_C$ — open, Semi – open, Regular – open.

·---- • -----

1 Introduction

To 1963 Kelly J. C. [9] was first introduced the concept of bitopological spaces. Where X is a nonempty set and τ_1 , τ_2 are topologies on X. In 1963 Levine N. [10] introduced the concept of semi-open sets in topological spaces. Several properties of classic notion have been studied and investigated. In 1971, Crossley and Hildebrand [3] gave some properties of the semi – closure. In this paper, I introduce the concept of new class of semi – open set

In this paper, I introduce the concept of new class of semi – open set in bitopological space, and I find basic properties and relationships with other concept of sets. Throughout this paper, (X, τ_1, τ_2) is a bitopological space and if $A \subseteq X$, then j - sInt(A) and j - sCl(A) denote respectively the semi – interior and semi – closure of A with respect to τ_j of X.

2 PRELIMINARIES Definition 2.1

A subset A of a space (X, τ) is called:

- 1. Semi open [10], if $A \subseteq Cl(Int(A))$.
- 2. Regular open [12], if A = Int(Cl(A)).

The family of all semi – open (resp., regular open) sets in X is denoted by SO(X) (resp., RO(X)). The complement of a semi – open (resp., regular open) set is said to be semi – closed (resp., regular closed) and is denoted by SC(X) (resp., RC(X)). The intersection of all semi – closed sets of X containing A is called semi – closure of A and is denoted by SCl(A). The union of all semi – open sets of X contained in A called semi – interior of A and is denoted by SInt(A). A subset A of a space X is called δ – open [13], if for each $x \in A$, there exists an open set G such that $x \in G \subseteq Int(Cl(G)) \subseteq A$. A subset A of a space X is called θ – semi – open [8] (resp., semi – θ – open [5]), if for

 Hardi N.Aziz master's degree program in topology in University of Sulaimani, Iraq,.harde.1984@yahoo.com δ — open (resp., θ — semi — open, semi — θ — open) sets in X denoted by $\delta O(X)$ (resp., $\theta SO(X)$, $S\theta O(X)$). A point $x \in X$ is said to be semi — θ — closure of a subset A of X if $A \cap SCl(U) \neq \emptyset$, for each $U \in SO(X)$ containing x and is denoted by $SCl_{\theta}(A)$ [5]. A subset τ^* of subsets of X is called a supratopology on X [7], if X, $\emptyset \in \tau^*$ and τ^* is closed under arbitrary unions. A subset A of a bitopological space (X, τ_1, τ_2) is said to be ij — clopen [1], if A is i-closed and j-open set in X. A space X is regular if for each $x \in X$ and each open set G containing G0, there exist an open set G1 such that G1.

Definition 2.2

A topological space X is called:

- 1. T_1 Space [11] if for every two distinct points of X there exist two open sets each one contains one of the points but not the other.
- 2. Extermally disconnected [5], if $Cl(U) \in \tau$, for every $U \in \tau$.

Theorem 2.3 [4]

Let (X, τ) be a topological space. If $G \in \tau$ and $Y \in SO(X)$, then

 $G \cap Y \in SO(X)$.

Theorem 2.4 [6]

A space X is extermally disconnected if and only if RO(X) = RC(X).

each $x \in A$, there exists a semi – open set G such that $x \in G \subseteq Cl(G) \subseteq A$ (resp., $x \in G \subseteq SCl(G) \subseteq A$). The family of all

Theorem 2.5

For any spaces X and Y, if $A \subseteq X$ and $B \subseteq Y$, then

1-
$$sInt_{X\times Y}(A\times B) = sInt_X(A)\times sInt_Y(B)$$
. [2].

2-
$$Cl_{X\times Y}(A\times B) = Cl_X(A)\times Cl_Y(B)$$
. [11].

Theorem 2.6

Let (Y, τ_Y) be a subspace of a topological space (X, τ) , then

- 1- If $A \in SO(X)$ and $A \subseteq Y$, then $A \in SO(Y)$. [10].
- 2- If A is closed subset in X and $A \subseteq Y$, then A is closed subset in Y. [11].
- 3- If $A \in SO(Y)$ and $Y \in SO(X)$, then $A \in SO(X)$. [2].
- **4-** If A is closed in Y and Y is closed in X, then A is closed in X. [11].

3 $(i, j) - S_C - OPEN SETS$

In this section, I introduce and define a new type of sets in bitopological spaces and I give some of its properties.

Definition 3.1

A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(i,j) - S_C$ — open, if A is j — semi — open and for all $x \in A$, there exist an i — closed set F such that $x \in F \subseteq A$. A subset B of X is called $(i,j) - S_C$ — closed if and only if B^C is $(i,j) - S_C$ — open. The family of $(i,j) - S_C$ — open (resp., $(i,j) - S_C$ — closed) subset of X is denoted by $(i,j) - S_C O(X)$ (resp., $(i,j) - S_C C(X)$).

Corollary 3.2

A subset \tilde{A} of a bitopological space (X, τ_1, τ_2) is $(i, j) - S_C$ — open, if A is j — semi — open and it is a union of i — closed sets. This means that $A = \cup F_{\gamma}$, where A is j — semi — open and F_{γ} is an i — closed set for each γ .

Corollary 3.3

A subset B of a bitopological space (X, τ_1, τ_2) is $(i, j) - S_C - closed$, if and only if B is j - semi-closed and it is an intersection of i - closed sets.

Proof. Follows from Corollary 3.2 taking $A = B^{C}$.

It is clear that every $(i, j) - S_C$ – open subset of a space X is j – semi – open set, but the converse is not true in general, as shown in the following example:

Example 3.4

Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, \{a\}, \{b, c\}, X\}, \tau_2 = \{\emptyset, \{b\}, X\}, \text{ then } (i, j) - S_CO(X) = \{\emptyset, \{b, c\}, X\}, \text{ we see that } \{b\} \in j - SO(X), \text{ but } \{b\} \notin (i, j) - S_CO(X).$

It is clear that the union of any family of $(i,j) - S_C$ — open sets in a space X is also $(i,j) - S_C$ — open. The intersection of two (i,j) — S_C —open sets is not $(i,j) - S_C$ —open set in general, as

shown in the following example:

Example 3.5

$$\begin{split} X &= \big\{a,b,c,d\big\}, \\ \tau_1 &= \\ \big\{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{c,d\}, \{a,b,c\}, \\ & \{a,b,d\}, \{a,c,d\}, \{b,c,d\}, X \\ \end{split}$$
 $\tau_2 \\ &= \Big\{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{c,d\}, \{a,b,c\}, \{a,b,d\}, \\ & \{a,c,d\}, \{b,c,d\}, X \\ \end{split}$ $(i,j) - S_C O(X) \\ &= \Big\{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{c,d\}, \{a,b,c\}, \{a,b,d\}, \\ & \{a,c,d\}, \{b,c,d\}, X \\ \end{split}$ If $A = \{a,d\}$ and $B = \{b,d\}$, then $A \cap B = \{d\} \notin (i,j) - S_C O(X)$.

From the above example I notice that the family of all $(i,j) - S_C$ — open sets is a supratopology and it is not a topology in general.

Lemma 3.6 [11]

A space X is T_1 if and only if every singleton set $\{x\}$ is closed in X.

Proposition 3.7

Let (X, τ_1, τ_2) be a bitopological space. if (X, τ_i) is T_1 – space, then $(i, j) - S_CO(X) = j - SO(X)$.

Proof. Let A be any subset of a space X and $A \in j - SO(X)$. If $A = \emptyset$, then $A \in (i,j) - S_CO(X)$. If $A \neq \emptyset$, let $x \in A$. Since (X,τ_i) is $T_1 - S_CO(X)$, then by Lemma 3.6 every singleton is $i - C_CO(X)$ and hence $x \in \{x\} \subseteq A$. Therefore, $A \in (i,j) - S_CO(X)$, hence $j - SO(X) \subseteq (i,j) - S_CO(X)$, but $(i,j) - S_CO(X) \subseteq j - SO(X)$ generally. Thus $(i,j) - S_CO(X) = j - SO(X)$.

Proposition 3.8

A subset A of a bitopological space (X, τ_1, τ_2) is $(i, j) - S_C$ — open set if and only if for each $x \in A$, there exists an $(i, j) - S_C$ — open set B such that

 $x \in B \subseteq A$.

Proof. Assume that A is $(i,j) - S_C$ — open, then for each $x \in A$, put A = B is $(i,j) - S_C$ — open set containing x such that $x \in B \subseteq A$. Conversely. Suppose that for each $x \in A$, there exist an $(i,j) - S_C$ — open set B such that $x \in B \subseteq A$, thus $A = \cup B_x$, where $B_x \in (i,j)$ — $S_CO(X)$ for each x, therefore A is $(i,j) - S_C$ — open set.

Proposition 3.9

If a subset A of a bitopological space (X, τ_1, τ_2) is ij -clopen, then A is $(i, j) - S_C$ - open.

Proof. Since *A* is ij —clopen, so *A* is j — open and i — closed, this implies that *A* is j — semi — open and i — closed. Thus for all $x \in A$, $x \in A \subseteq A$. Hence $A \in (i, j) - S_C O(X)$.

Proposition 3.10

For any bitopological space (X, τ_1, τ_2) , if $A \in j - SO(X)$ and $A \in i - SO(X)$, then $A \in (i, j) - S_CO(X)$.

Proof. Let $A \in i - S\theta O(X)$ and $A \in j - SO(X)$. If $A = \emptyset$, $A \in (i, j) - S_C O(X)$. If $A \neq \emptyset$, then for each $x \in A$, there exists an i - semi - open set U such that

 $x \in U \subseteq i - sCl(U) \subseteq A$, this implies that $x \in i - Cl(U) \subseteq A$, where i - Cl(U) is i - closed and $A \in j - SO(X)$. Therefore, $A \in (i, j) - S_CO(X)$.

Since each θ – semi – open is semi – θ – open, so we have the following:

Corollary 3.11

For any subset A of a bitopological space (X, τ_1, τ_2) , if $A \in j - SO(X)$ and $A \in i - \theta SO(X)$, then $A \in (i, j) - S_CO(X)$.

Proposition 3.12

Let(X, τ_1 , τ_2) be a bitopological space and A, B \subseteq X. If A \in (i, j) – $S_CO(X)$ and B is ij – clopen, then A \cap B \in (i, j) – $S_CO(X)$.

Proof. Since $A \in (i,j) - S_CO(X)$, so $A \in j - SO(X)$ and since B is ij – clopen, then B is j – open, so by Theorem 2.3 $A \cap B \in j$ – SO(X). Let $x \in A \cap B$, then $x \in A$ and $x \in B$ therefore, there exist an i – closed set F such that $x \in F \subseteq A$ and since B is ij – clopen, so B is i – closed set, this implies that $F \cap B$ is i – closed set, therefore,

 $x \in F \cap B \subseteq A \cap B$. Thus $A \cap B$ is $(i, j) - S_C$ – open in X.

Proposition 3.13

Let(X, τ_1 , τ_2) be a bitopological space and A, B \subseteq X.Let (X, τ_i) be an extermally disconnected. If A \in (i, j) - S_CO(X) and B \in j - RO(X) \cap i - RO(X), then A \cap B \in (i, j) - S_CO(X).

Proof. Let $A \in (i, j) - S_CO(X)$ and $B \in j - RO(X)$, then $A \in j - SO(X)$ and B is j - open, then by Theorem 2.3 $A \cap B \in j - SO(X)$. Let $x \in A \cap B$, then $x \in A$ and

 $x \in B$, therefore there exist an i- closed set F such that $x \in F \subseteq A$. Since (X, τ_i) is extermally disconnected, then by Theorem 2.4 B is i- regular closed set, this implies that $F \cap B$ is i- closed set, therefore $x \in F \cap B \subseteq A \cap B$. Thus $A \cap B$ is $(i,j) - S_C -$ open set in X.

Proposition 3.14

Let X_1, X_2 be two bitopological spaces. If $A \in (i,j) - S_CO(X_1)$ and $B \in (i,j) - S_CO(X_2)$, then $A \times B \in (i,j) - S_CO(X_1 \times X_2)$. Proof. Let $(x,y) \in A \times B$, then $x \in A$ and $y \in B$. Since $A \in (i,j) - S_CO(X_1)$ and $B \in (i,j) - S_CO(X_2)$, then $A \in j - SO(X_1)$ and $B \in j - SO(X_2)$, and there exist i - closed sets F and E in X_1 and X_2 respectively, such that $x \in F \subseteq A$ and $y \in E \subseteq B$, therefore $(x,y) \in F \times E \subseteq A \times B$. Since $A \in j - SO(X_1)$ and $B \in j - SO(X_2)$, then by Theorem 2.5 (1), $A \times B = j - sInt_X(A) \times j - sInt_Y(B) = j - sInt_{X \times Y}(A \times B)$, so $A \times B \in j - SO(X_1 \times X_2)$. Since F is $F \in Cl_X(F) \times Cl_Y(E) = Cl_{X \times Y}(F \times E)$. So $F \times E$ is $F \in Closed$ in $F \in C$

Corollary 3.15

Let X_1, X_2 be two bitopological spaces. If $A \in (i, j) - S_CC(X_1)$ and $B \in (i, j) - S_CC(X_2)$, then $A \times B \in (i, j) - S_CC(X_1 \times X_2)$. Proposition 3.16

Let Y be a subspace of a bitopological space (X, τ_1, τ_2) . If $A \in (i, j) - S_CO(X)$ and $A \subseteq Y$, then $A \in (i, j) - S_CO(Y)$.

Proof. Let $A \in (i,j) - S_CO(X)$, then $A \in j - SO(X)$ and for each $x \in A$, there exists an i – closed set F such that $x \in F \subseteq A$. Since $A \in j - SO(X)$ and $A \subseteq Y$, then by Theorem 2.6 (1), $A \in j - SO(Y)$, since F is i – closed set in X and $F \subseteq Y$, then by Theorem 2.6 (2), F is i – closed set in Y. Hence $A \in (i,j) - S_CO(Y)$.

Proposition 3.17

Let Y be a subspace of a bitopological space (X, τ_1, τ_2) and $A \subseteq Y$. If $A \in (i,j) - S_CO(Y)$ and $Y \in j - RC(X) \cap i - RC(X)$, then $A \in (i,j) - S_CO(X)$.

Proof. Let $A \in (i,j) - S_CO(Y)$, then $A \in j - SO(Y)$ and for each $x \in A$ there exist an i-closed set F in Y such that $x \in F \subseteq A$. Since $Y \in j-RC(X)$, then $Y \in j-SO(X)$ and since $A \in j-SO(Y)$, so by Theorem 2.6 (3), $A \in j-SO(X)$. Again since $Y \in i-RC(X)$

Then Y is i – closed in X and F is i – closed in Y so by Theorem 2.6 (4), F is i – closed in X. Therefore $A \in (i,j) - S_CO(X)$.

Corollary 3.18

Let Y be a subspace of a bitopological space (X, τ_1, τ_2) and $B \subseteq Y$. If $B \in (i,j) - S_CC(Y)$ and $Y \in j - RO(X) \cap i - RO(X)$, then $B \in (i,j) - S_CC(X)$.

Proposition 3.19

Let (X, τ_1, τ_2) be a bitopological space. if (X, τ_i) is regular space, then $\tau_i \subseteq (i, j) - S_CO(X)$.

Proof. Let $A \in \tau_j$. If $A = \emptyset$, $A \in (i,j) - S_CO(X)$. Let $A \neq \emptyset$, since (X,τ_j) is regular, so for each $x \in A \subseteq X$, there exists an i – open set G such that $x \in G \subseteq i - Cl(G) \subseteq A$. Thus $x \in i - Cl(G) \subseteq A$. Since $A \in \tau_j$ which implies that $A \in j - SO(X)$, therefore $A \in (i,j) - S_CO(X)$. Hence $\tau_i \subseteq (i,j) - S_CO(X)$.

4 On $(i,j) - S_C$ — open Operators Definition 4.1

Let (X, τ_1, τ_2) be a bitopological space and $x \in X$. A subset N of X is said to be $(i, j) - S_C$ — neighborhood of x, if there exists an $(i, j) - S_C$ — open set U in X such that $x \in U \subseteq N$.

Proposition 4.2

In a bitopological space (X, τ_1, τ_2) a subset A of a space X is $(i,j) - S_C$ — open set if and only if it is an $(i,j) - S_C$ — neighborhood of each of its points.

Proof. Obvious.

Proposition 4.3

For any two subsets A, B of a bitopological space (X, τ_1, τ_2) and $A \subseteq B$, if A is $(i, j) - S_C$ — neighborhood of a point $x \in X$, then B is also $(i, j) - S_C$ — neighborhood of the same point x. Proof. Straightforward.

Definition 4.4

If A is a subset of a bitopological space (X, τ_1, τ_2) , then the $(i,j) - S_C - interior((i,j) - S_C Int(A))$, the $(i,j) - S_C - closure((i,j) - S_C Cl(A))$,

- **L-** $(i, j) S_C Int(A) = \cup \{U: U \subseteq A, U \in (i, j) S_C O(X)\}.$
- 2- $(i,j) S_C Cl(A) = \cap \{F: A \subseteq F, X F \in (i,j) S_C O(X)\}.$
- **3-** $(i,j) S_C Bd(A) = (i,j) S_C Cl(A) (i,j) S_C Int(A)$.

Proposition 4.5

For any subsets A, B of a bitopological space (X, τ_1, τ_2) , the following statement are hold:

- **1-** $(i,j) S_C Int(A)$ is $(i,j) S_C$ open set in X.
- **2-** A is $(i, j) S_C$ open set if and only if $A = (i, j) S_C Int(A)$.
- 3- $(i,j) S_C Int((i,j) S_C Int(A)) = (i,j) S_C Int(A)$.
- **4-** $(i, j) S_C Int(\emptyset) = \emptyset$ and $(i, j) S_C Int(X) = X$.
- 5- $(i,j) S_C Int(A) \subseteq A$.
- **6-** If $A \subseteq B$, then $(i, j) S_C Int(A) \subseteq (i, j) S_C Int(B)$.
- 7- $(i,j) S_C Int(A) \cup (i,j) S_C Int(B) \subseteq (i,j) S_C Int(A \cup B)$.
- 8- $(i,j) S_C Int(A \cap B) \subseteq (i,j) S_C Int(A) \cap (i,j) S_C Int(B)$.

In general the $(i, j) - S_C Int(A) \cup (i, j) - S_C Int(B) \neq (i, j) - S_C Int(A \cup B)$ and $(i, j) - S_C Int(A \cap B) \neq (i, j) - S_C Int(A) \cap (i, j) - S_C Int(B)$, as shown in the following examples:

Example 4.6

Let $X = \{a, b, c, d\}, \tau_1 = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\} \text{ and } \tau_2 = \{\emptyset, \{a\}, \{a, b\}, X\},$

then $(i, j) - S_C O(X) = \{\emptyset, \{a, d\}, \{a, c, d\}, \{a, b, d\}, X\}$

If
$$A = \{a, d\}$$
 and $B = \{c, d\}$, then $(i, j) - S_C Int(A) = A$, $(i, j) - S_C Int(B) = \emptyset$ and

$$(i,j) - S_C Int(A \cup B) = (i,j) - S_C Int(\{a,c,d\}) = \{a,c,d\} \neq \{a,d\}$$

= $(i,j) - S_C Int(A) \cup (i,j) - S_C Int(B)$

Example 4.7

Consider the space X as in Example 3.5. If $A = \{a, d\}$ and $B = \{b, d\}$, then $(i, j) - S_C Int(A) = \{a, d\}$, $(i, j) - S_C Int(B) = \{b, d\}$ and $(i, j) - S_C Int(A \cap B) = (i, j) - S_C Int(\{d\}) = \emptyset \neq \{d\}$ $= (i, j) - S_C Int(A) \cap (i, j) - S_C Int(B)$

In general, if $(i, j) - S_C Int(A) \subseteq (i, j) - S_C Int(B)$, then is not necessarily that $A \subseteq B$, as shown in the following example:

Example 4.8

Consider the space X as in Example 4.6. if $A = \{c, d\}, B = \{a, d\},$ then $(i, j) - S_C Int(A) = \emptyset \subseteq (i, j) - S_C Int(B) = \{a, d\},$ but $A \nsubseteq B$.

Proposition 4.9

If A is any subset of a bitopological space X, then

$$(i,j) - S_C Int(A) \subseteq j - sInt(A) \subseteq A \subseteq j - sCl(A) \subseteq (i,j) - S_C Cl(A)$$
.
In general, $(i,j) - S_C Int(A) \neq j - sInt(A)$ and $j - sCl(A) \neq (i,j) - S_C Cl(A)$, as shown in the following examples:

Example 4.10

Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, \{a\}, \{b, c\}, X\}, \text{ and } \tau_2 = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}, \text{ then } (i, j) - S_CO(X) = \{\emptyset, \{a\}, \{b, c\}, X\}$

If $A = \{a, b\}$, then $j - sInt(A) = \{a, b\} \neq \{a\} = (i, j) - S_CInt(A)$.

Example 4.11

Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}, \tau_2 = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}, then (i, j) - S_CO(X) = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}.$

If $A = \{b\}$, then $(i, j) - S_C Cl(A) = \{a, b\} \neq j - sCl(A) = \{b\}$.

Proposition 4.12

Let A be any subset of a bitopological space X. If $A \cap F \neq \emptyset$ for every i- closed set F of X containing x, then the point x is in the $(i,j)-S_C-$ closure of A.

Proof. Suppose that U be any $(i,j) - S_C$ — open set containing x, then there exist an i — closed set F such that $x \in F \subseteq U$, so by hypothesis $A \cap F \neq \emptyset$, which implies that $A \cap U \neq \emptyset$, for every $(i,j) - S_C$ — open set U containing x. Therefore, $x \in (i,j) - S_C \operatorname{Cl}(A)$.

Proposition 4.13

For any subsets A, B of a bitopological space X, the following statements are true:

- 1- $(i, j) S_C Cl(A)$ is $(i, j) S_C closed$ set in X.
- **2-** A is $(i, j) S_C closed$ set if and only if $A = (i, j) S_C Cl(A)$.
- 3- $(i,j) S_C Cl((i,j) S_C Cl(A)) = (i,j) S_C Cl(A)$.
- **4-** $(i,j) S_C Cl(\emptyset) = \emptyset$, and $(i,j) S_C Cl(X) = X$.
- **5-** If $A \subseteq B$, then $(i, j) S_C Cl(A) \subseteq (i, j) S_C Cl(B)$.
- **6-** $(i,j) S_C Cl(A) \cup (i,j) S_C Cl(B) \subseteq (i,j) S_C Cl(A \cup B).$
- 7- $(i,j) S_CCl(A \cap B) \subseteq (i,j) S_CCl(A) \cap (i,j) S_CCl(B)$. Proof. Obvious.

In general, $(i, j) - S_C Cl(A) \cup (i, j) - S_C Cl(B) \neq (i, j) - S_C Cl(A \cup B)$ and $(i, j) - S_C Cl(A \cap B) \neq (i, j) - S_C Cl(A) \cap (i, j) - S_C Cl(B)$, as shown in the following examples:

Example 4.14

Consider the space X as in Example 3.5, if $A = \{a, b\}$ and $B = \{c\}$, then $(i, j) - S_CCl(A) = \{a, b\}$, $(i, j) - S_CCl(B) = \{c\}$ and

 $(i, j) - S_CCl(A \cup B) = (i, j) - S_CCl(\{a, b, c\}) = X \neq \{a, b, c\}$

$$= (i, j) - S_CCl(A) \cup (i, j) - S_CCl(B)$$

Example 4.15

Consider the space X as in Example 4.10, if A = {a,b} and B = {a,c}, then (i,j) - $S_CCl(A) = X_c(i,j) - S_CCl(B) = X$ and (i,j) - $S_CCl(A \cap B) = (i,j) - S_CCl(A) = \{a\} \neq X$ = (i,j) - $S_CCl(A) \cap (i,j) - S_CCl(B)$

The proof of the following result is obvious.

Proposition 4.16

For any subset A of a bitopological space X, the following statements are true:

$$\begin{split} X - & [(i,j) - S_C Cl(A)] = (i,j) - S_C Int(X - A). \\ X - & [(i,j) - S_C Int(A)] = (i,j) - S_C Cl(X - A). \\ (i,j) - & S_C Cl(A) = X - [(i,j) - S_C Int(X - A)]. \\ & (i,j) - S_C Int(A) = X - [(i,j) - S_C Cl(X - A)] \end{split}$$

Proposition 4.17

Let A be a subset of a bitopological space X, then we have:

If $A \in (i, j) - S_CO(X)$, then $j - Cl_{\theta}(A) \subseteq (i, j) - S_CCl(A)$.

If A is both $(i,j) - S_C$ – open and $(i,j) - S_C$ – closed set, then $A = (i,j) - S_C Int((i,j) - S_C Cl(A))$.

Proof. 1) Assume that $x \notin (i,j) - S_C Cl(A)$, then by Proposition 4.12 there exist an $(i,j) - S_C -$ open U containing x such that $A \cap U = \emptyset$, this implies that

 $\begin{array}{ll} A\cap (i,j)-S_CCl(U)=\emptyset, & \text{ since } A\in (i,j)-S_CO(X), & \text{ but } j-sCl(U)\subseteq (i,j)-S_CCl(U) & \text{ implies } & \text{ that } A\cap j-sCl(U)=\emptyset, \\ \text{therefore } x\notin j-sCl_\theta(A). & \end{array}$

2) If A is both $(i,j) - S_C$ – open and $(i,j) - S_C$ – closed set, then $(i,j) - S_C Int((i,j) - S_C Cl(A)) = (i,j) - S_C Int(A) = A$.

Proposition 4.18

For any subset A of a space X, we have the following properties:

- $(i,j) S_C Bd(A) = (i,j) S_C Cl(A) \cap (i,j) S_C Cl(X A).$
- $(i,j) S_C Bd(A)$ is $(i,j) S_C closed$ set.
- $(i,j) S_C Int(A) \cap (i,j) S_C Bd(A) = \emptyset.$
- $(i,j) S_C Cl(A) = (i,j) S_C Int(A) \cup (i,j) S_C Bd(A).$
- $(i,j) S_C Bd((i,j) S_C Int(A)) \subseteq (i,j) S_C Bd(A).$
- $(i,j) S_C Bd((i,j) S_C Cl(A)) \subseteq (i,j) S_C Bd(A).$
- $(i,j) S_C Bd((i,j) S_C Bd(A)) \subseteq (i,j) S_C Bd(A).$
- $(i, j) S_C Bd(A) = (i, j) S_C Bd(X A).$
- $(i, j) S_C Int(A) = A [(i, j) S_C Bd(A)].$

Proof. Obvious.

The following result can be proved straightforward statements:

Proposition 4.19

For any subset A of a bitopological space X, we have the following:

If A is both $(i,j) - S_C$ — open and $(i,j) - S_C$ — closed, then $(i,j) - S_CBd(A) = \emptyset$.

If A is $(i,j) - S_C - closed$ and $(i,j) - S_C Int(A) = \emptyset$, then $(i,j) - S_C Bd(A) = A$.

Denote the $(i, j) - S_C - closure$ of a set A in a subspace Y by $(i, j) - S_C Cl_Y(A)$.

Proposition 4.20

If A and Y are subsets of a bitopological space $X, A \subseteq Y \subseteq X$ and $Y \in i - RC(X) \cap j - RC(X)$, then $(i, j) - S_CCl_Y(A) \subseteq (i, j) - S_CCl(A)$.

Proof. Let $x \in (i,j) - S_C Cl_Y(A)$, then $U \cap A \neq \emptyset$, for each

 $(i,j) - S_C - \text{open set U in Y containing x. Since U} \in (i,j) - S_CO(Y)$ and $Y \in i - RC(X) \cap j - RC(X)$, then by Proposition 3.17 U \in $(i,j) - S_CO(X)$, thus $x \in (i,j) - S_CCI(A)$. Therefore $(i,j) - S_CCI_Y(A) \subseteq (i,j) - S_CCI(A)$.

Proposition 4.21

If A and Y are subsets of a bitopological space X, $A \subseteq Y \subseteq X$ and Y is i — clopen and j — clopen, then (i,j) — $S_CCl_Y(A)$.

Proof. Let $x \in (i, j) - S_CCl(A) \cap Y$, then $x \in (i, j) - S_CCl(A)$ and $x \in Y$. Take any

 $V \in (i,j) - S_CO(Y)$ containing x, since Y is i- clopen and j- clopen, this implies that Y is j- regular closed and i- regular closed, then by Proposition 3.17

 $V \in (i,j) - S_CO(X)$ containing x and hence $V \cap A \neq \emptyset$, then we get that

 $\begin{array}{l} x\in (i,j)-S_CCl_Y(A). \ Thus \ (i,j)-S_CCl(A)\cap Y\subseteq (i,j)-S_CCl_Y(A). \\ \text{On the other hand, let} \ x\in (i,j)-S_CCl_Y(A), \ so \ that} \ x\in Y. \\ \text{Let} \ V\in (i,j)-S_CO(X) \ containing} \ x. \ Since \ Y \ is \ i-clopen \ and} \ j-clopen \ then} \ V\cap Y\in (i,j)-S_CO(X), \ since} \ V\cap Y\subseteq Y\subseteq X, \ so \ by \\ \text{Proposition } 3.16 \ V\cap Y\in (i,j)-S_CO(Y). \ Consequently \\ \end{array}$

 $A \cap (V \cap Y) \neq \emptyset$, hence $A \cap V \neq \emptyset$, so $x \in (i, j) - S_CCl(X)$, implies that

 $x \in (i,j) - S_CCl(X) \cap Y$, therefore, $(i,j) - S_CCl_Y(A) \subseteq (i,j) - S_CCl(A) \cap Y$.

Thus, $(i, j) - S_C Cl(A) \cap Y = (i, j) - S_C Cl_Y(A)$.

REFERENCES

- [1] Adem Kilicman and Zabidin Salleh, Pairwise weakly regular Lindelof space, Hindawi publishing, (2008).
- [2] Ahmad N. K., On some types of separation axioms, M. Sc. Thesis, college of science, Salahaddin Univ., 1990.
- [3] Ahmad N. K., On some types of separation axioms, M. Sc. Thesis, college of science, Salahaddin Univ., 1990.)
- [4] Crossley S. G. and. Hildebrand S. K, Semi closure, Texas J. Sci., 22(1971), 99-
- [5] Di Maio G. and Noiri T., On s-closed spaces, Indian J. pure Appl. Math. 18(3) (1987), 226-233.
- [6] Dontchev J., Survy on preopen sets, the proceedings of Yatsushiro topological conference, (1998), 1-18.
- [7] Husain T., Topology and maps, Plenum press, 1977.
- [8] Joseph J. E. and Kwack M. H., On S-closed spaces, Proc. Amer. Math. Soc., 80(2) (1980), 341-348.
- [9] Kelly J. C., Bitopological spaces, Proc. London, Math. Soc. 13(1963), 71-89.
- [10] Levine N., semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1) (1963), 36-41.
- [11] Sharma J. N., Topology, Krishma parkashan Mandir, 2(1977).
- [12] Steen L. A. and Seebach J. A., Counter examples in topology, Springer Verlag New York Heildberg Berlin, 1978.
- [13] Velicko N. V., H-closed topological spaces, Amer. Math. Soc. Transl., 78(2) (1968),103-118.